

Date Planned ://				I	Daily Tutorial Sheet-4			Expected Duration : 30 Min		
Actual Date of Attempt : / /				_	Level-1			Exact Duration :		
46.	Which	n amongst the	following is	s also called	l as a sesqui	oxide :			lacksquare	
	(A)	$\mathrm{B}_2\mathrm{O}_3$	(B)	${\rm Al_2O_3}$	(C)	${\rm Ga_2O_3}$	(D)	All		
47 .		n species does		2		0		0		
	(A)	$[BF_{6}]^{3-}$	(B)	$[AlF_6]^{3-}$	(C)	[GaF ₆] ³⁻	(D)	$[InF_6]^{3-}$	45	
48.		e bonds are no	-		(=\)		4 >		$oldsymbol{f E}$	
	(A)	Al_2Cl_6	(B)	BF_3	(C)	Borazole	(D)	B_2H_6		
49 .		All the products formed in the oxidation of $NaBH_4$ by I_2 are:							\odot	
	(A)	B_2H_6 and B_2H_6			(B)	B_2H_6 , H_2 and NaI				
	(C) BI ₃ and NaH (D) NaBI ₄ and HI									
50 .		Select correct statement about H_3BO_3 : (A) It has triangular BO_3^{3-} units								
	(A)		-							
	(B) In solid states, molecules are hydrogen bonded (C) Roth the above statements Land 2 are correct									
	(C) Both the above statements 1 and 2 are correct(D) None of the statement is correct									
E 1										
51.	(A)	boric acid bening $H_2BO_3^-$	aves as we (B)	ak monobas BO_3^{3-}	sic acid givin; (C)	g H and [B(OH) ₄] ⁻		BO_2^-	$lackbox{}{lackbox{}{lackbox{}{}}}$	
E 0				J		-	(2)	202	\odot	
52 .	3									
	(A) (B)	-								
	(C)									
	hydrogen atoms get fitted in between boron atoms									
	(D)	None of thes	se							
53 .	With	Vith a given anion the correct stability order of tetra haloborates is :							\odot	
	(A)	(A) $BCl_4^- > BBr_4^- > Bl_4^-$			(B)	$\mathrm{BI}_4^- > \mathrm{BBr}_4^- > \mathrm{BCI}_4^-$			_	
	(C)	$BCl_4^- = BBr$	$\frac{1}{4} > \mathrm{BI}_4^-$		(D)	$BCl_4^- = BBr_3^-$	$_{4}^{-} = BI_{4}^{-}$			
54 .	BCl。	+ LiAlH₁ → A +	LiCl + AlC	l ₃						
- •	$BCl_3 + LiAlH_4 \rightarrow A + LiCl + AlCl_3$ $A + H_2O \rightarrow B + H_2$								\mathbf{C}	
	$B \xrightarrow{\text{Red heat}} C$. In this reaction sequence A, B and C compounds respectively are :									
	(A)	B_2H_6 , B_2O_3 , B			(B) B_2H_6 , H_3BO					
	(C)	B_2H_6, H_3BC			(D)	HBCl ₄ , H ₃ B				
55.		2 0 0	Ü	Re and Al ?		4/ 3-	J, Z-3			
.	 Which is not correct in case of Be and Al? (A) Both are rendered passive by conc. HNO₃ (B) Carbides of both give methane on hydrolysis 									
	(C)									
	(D)	Both give co	valent chlo	orides						
	_									

- **56.** Graphite is used as lubricant due to :
 - **(A)** The slippery nature

(B) Its giant structure

(C) High refractive index

- (D) High IP value of carbon
- **57.** SiF₄ + H₂O \longrightarrow A $\xrightarrow{1000^{\circ}\text{C}}$ B $\xrightarrow{\text{Na}_2\text{CO}_3}$ C

Identify B & C?

(A) H_4SiO_4 , Na_2SiO_3

a > b > c

(B) SiO_2 , SiC

(C) SiO_2 , Na_2CO_3

(D) SiO_2 , Na_2SiO_3

b > c > a

58. Decreasing order of "p" orbital character in the following :

(B)

(a) SiO_2

(A)

- (b) CO_2
- (c) Graphite
- **(D)** a > c > b
- **59.** Silicon has a strong tendency to form polymers like silicones, the chain length of silicone polymers can be controlled by adding:

(C)

- (A) $MeSiCl_3$
- (B)
- Me_2SiCl_2

b > a > c

- (C) Me₃SiCl
- (**D**) Me_4Si

60. Which of the following undergoes hydrolysis?

- **(A)** BCl₃
- **(B)** $COCl_2$
- (C) $SiCl_4$
- **(D)** All of these